首页> 外文OA文献 >Power-Law Inter-Spike Interval Distributions Infer a Conditional Maximization of Entropy in Cortical Neurons
【2h】

Power-Law Inter-Spike Interval Distributions Infer a Conditional Maximization of Entropy in Cortical Neurons

机译:幂律峰间间隔分布推断皮质神经元熵的条件最大化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe restriction on the energy consumption, the maximization of mutual information (MMI), which is adequate for designing artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two constraints, one limiting the energy consumption (as assumed previously) and one restricting the uncertainty in output spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE) solves a tradeoff between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through broader communication bands (i.e., widely distributed firing rates) at the cost of accuracy. We demonstrate that the CMFE is reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the mathematical principle by which cortical neurons may represent information about synaptic input into their output spike trains.
机译:人们认为大脑会使用相对较少的能量进行有效的信息处理。在能源消耗的严格限制下,足以设计人工处理机器的互信息最大化(MMI)可能不适合大脑。 MMI尝试发送尽可能准确的信息,这通常需要足够的能量来建立清晰离散的通信频段。在这里,我们从行为大鼠的感觉运动皮层近旁记录的神经元活动中得出神经密码的另一种假设。我们的假设指出,在两个约束条件下,体内皮质神经元使神经元放电的熵最大化,一个约束条件是限制能量消耗(如前所述),另一个约束条件是在给定的发射速率下输出尖峰序列的不确定性。因此,激发速率熵(CMFE)的条件最大化解决了神经元反应中能量成本和噪声之间的折衷。简而言之,CMFE通过更宽的通信频段(即广泛分布的发射速率)发送了多种信息,但以准确性为代价。我们证明,CMFE反映在大多数记录的神经元获得的尖峰间隔的长尾(通常为幂律)分布中。换句话说,幂律尾部与CMFE而不是MMI更一致。因此,我们提出了数学原理,通过该原理,皮质神经元可以表示有关突触输入到其输出峰值序列的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号